If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2-7=0
a = 49; b = 0; c = -7;
Δ = b2-4ac
Δ = 02-4·49·(-7)
Δ = 1372
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1372}=\sqrt{196*7}=\sqrt{196}*\sqrt{7}=14\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{7}}{2*49}=\frac{0-14\sqrt{7}}{98} =-\frac{14\sqrt{7}}{98} =-\frac{\sqrt{7}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{7}}{2*49}=\frac{0+14\sqrt{7}}{98} =\frac{14\sqrt{7}}{98} =\frac{\sqrt{7}}{7} $
| 261=-v+39 | | j2+10=13 | | j2+ 10=13 | | -9x+4=89+5x | | 2x^2-5-7=0 | | 8x+4=-8x | | 9/x=0.32 | | -7+6x=7x-7 | | -8(4-r)16-32-8r=16-8r=48r=-6 | | 2+7x=-5x+62 | | (8-3x22)/3=x | | 3+7x=3x-13 | | -4-3x=2x-44 | | -32-88r=16 | | 3+x=3x-3 | | 16x12=x | | 5-6x=7x-73 | | 6n−25=71 | | 4r+2=50 | | -6x2–600=0 | | 18x^2+4x+6=0 | | 4z/10-7=-8z= | | X+X+20+y=180 | | 18^2+4x+6=0 | | 2(4x+10)=8x-20 | | 10+9d=55 | | 9z+31=94 | | 18+2u=32 | | y/4-y/14=1/4 | | 2s−53=21 | | 6b+2=98 | | P^2I-10p+15=0 |